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Abstract.  In the MST reversed field pinch the radial profile of the plasma rotation undergoes 

a rapid flattening during magnetic reconnection events. The reconnection events are 

repetitive (occurring as sawtooth crashes) and correspond to bursts of tearing instabilities.  

The radial transport of toroidal and poloidal momentum occurs faster than can be explained 

by collisions.  We measure the change in momentum spectroscopically and we measure the 

fluctuation-induced stresses (Maxwell stresses by laser Faraday rotation and Reynolds 

stresses in the edge with probes). We find that the stresses are large, but nearly equal in 

magnitude and opposite in direction, such that their difference can account for the change in 

momentum.  We also report theoretical investigations through quasilinear analytic calculation 

and nonlinear MHD computation that describe evaluated momentum transport from tearing 

modes, including their nonlinear coupling.  The combined experimental and theoretical 

studies establish that tearing modes transport momentum, and that the transport is enhanced 

through nonlinear mode coupling.  

 

1. Introduction 

 

It is observed in numerous toroidal plasma configurations that the plasma rotates 

spontaneously, acquiring toroidal and/or poloidal momentum in the absence of external 

torques.  In addition, it is observed that the radial transport of momentum is enhanced beyond 

that predicted to arise from Coulomb collisions.  Momentum transport and torques in 

tokamaks have been studied for many years; however, the causes are not yet determined [1].  

Electrostatic turbulence has been put forth as a possible mechanism.   

 

In the reversed field pinch, the plasma also spontaneously rotates, and this momentum is 

observed to be transported radially at a rapid rate relative to classical expectation. In the MST 

reversed field pinch (RFP), this is most evident during sudden magnetic reconnection 

events—the crash phase of sawtooth oscillations.[2]  During this brief time, the radial profile 

of the momentum becomes flatter.  In this paper, we provide experimental and theoretical 

results that establish that tearing instabilities, and their associated magnetic fluctuations, 

produce momentum transport and are the likely explanation for this behavior in the RFP. 

This mechanism could play a role in tokamaks during periods of strong MHD activity. 

 

The origin of the fairly large spontaneous rotation generation has not yet been identified in 

MST. Prior measurements in the far edge region of the reversed field pinch identify the 

spontaneous formation of plasma flow that is consistent with a turbulent Reynolds stress 

associated with electrostatic fluctuations.[3,4] Typically these measurements have been made 

in more quiescent periods that are not punctuated by large bursts in magnetic tearing 

reconnection. 
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Transport of momentum is determined through measurements of the changes in the rotation 

profile, reported in Section 2. The mechanism is established experimentally through 

measurement of Maxwell and Reynolds stresses arising from tearing instability, described in 

Section 3.  Theoretical examination of momentum transport from tearing modes is described 

in Section 4, with conclusions in Section 5. 

 

2.  Measurement of momentum transport 

 

Experiments are carried out in the MST reversed field pinch (a = 0.5 m, R = 1.5 m, current up 

to 0.5 MA) in Ohmically heated plasmas (no external momentum drive). MST exhibits 

sawtooth oscillations, during which the magnetic fluctuations surge and the current density 

profile flattens.  The current density transport process has long been studied, and is associated 

with tearing instability (the “dynamo effect”).  Sudden changes in plasma flow are also 

observed.[2]  For example, the core toroidal flow decreases during sawtooth crashes, as 

shown in FIG.1. 

 

 

This change in the flow corresponds 

primarily to a radial transport of 

momentum, rather than a net loss 

from the plasma. This is illustrated 

by comparing the core flow and the 

edge flow during the sawtooth 

crash, as shown in FIG.2.  The flow 

at different radii becomes nearly 

equal during the crash, indicating 

flattening of the profile.  The 

displayed flows are parallel to the 

magnetic field (toroidal in the core, 

poloidal in the edge), illustrating 

flattening of the parallel flow 

profile.  The time scale for the 

flattening (~ 100 µs) is much faster 

than expected from collisional 

viscosity.  Coincident with the 

 
FIG.1.  Toroidal flow speed in the center of the MST plasma, showing sudden change during 

reconnection events (sawtooth crashes). 

 
FIG.2. Plasma flow, parallel to the magnetic field, 

measured in the MST core and outer region through an 

individual sawtooth crash (reconnection event).  
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momentum transport is a surge of magnetic fluctuations (FIG.3), which have dominantly 

poloidal mode numbers m=0,1 and a range of toroidal mode numbers, n. This suggests 

causality between the momentum transport and magnetic fluctuations, which are known to be 

tearing instabilities. 

 

 

3.  Measurement of fluctuation-induced stresses 

 

Fluctuations can alter the plasma flow through the Maxwell and Reynolds stresses, as 

indicated from the momentum balance equation for the mean flow 
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where !  " denotes a magnetic surface average (or mean quantity), and tilde denotes 

fluctuations. (The parallel momentum balance is analyzed for its connection to the 

measurements in FIG.2 and discussion below.) The first term on the right side is the 

fluctuation-induced Lorentz force (related to the Maxwell stress) and the second term 

contains the Reynolds stress.  In the edge of MST (the outer 15% in minor radius) all three 

terms have been measured with probes (magnetic probes for magnetic field and current 

density, and Mach probes for flow). The measured three terms are shown in FIG.4.  Both the 

Lorentz force and the Reynolds stress term are large.  Surprisingly, they are each much larger 

than the inertial term (the left side of Eq. 1).  On the scale of the plot, the nonzero change in 

the inertial term is not evident.  Interestingly, the Lorentz force and Reynolds stress term are 

of comparable magnitude, but opposite in direction, and the difference between them is 

comparable in magnitude to the inertial term. 

 

This result in the MST edge is consistent with measurements in the core.  In the core, the 

flow and inertial term are measured with charge exchange recombination spectroscopy.  The 

Lorentz force is measured with laser Faraday rotation, which is capable of measuring 

magnetic field and current density fluctuations.  It is observed that the Lorentz force in the 

 
FIG.3.  Magnetic fluctuation amplitudes of a core-resonant mode (m = 1, n = 6) and an edge 
resonant mode (m = 0, n =1), showing bursts at the sawtooth crashes 
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core is much larger than the inertial term (the Reynolds stress has not yet been measured in 

the core).[5] 

 

The strong momentum transport observed at the sawtooth crash depends on whether or not 

nonlinear coupling between core-resonant m=1 tearing modes and edge-resonant m=0 modes 

occurs. This is illustrated in FIG.5, which shows the change in the core rotation depending on 

the appearance of a large increase in the m=0 edge mode. Occasionally there are events in 

which only the m=1 mode increases in amplitude, but the m=0 amplitude remains small (the 

red traces in FIG.5). The momentum transport is observed large only when both m=1 and 

m=0 modes burst to large amplitude. The m=0 mode has been measured to be linearly stable 

during the sawtooth crash, implying that its burst in amplitude results from nonlinear 

coupling to the known unstable m=1 modes in the core.[6] Other magnetic relaxation 

processes, e.g., the dynamo effect, possess this same behavior, large and global at the 

sawtooth crash only when the nonlinear coupling between m=1 and m=0 modes is strong. 

 

An obvious question is why the individual fluctuation-induced forces are so much larger than 

the inertial term.  The reason might be related to the coupling of the momentum transport to 

the current density transport.  The Lorentz force of Eq. 1 also enters as a fluctuation-induced 

 
 
FIG.4. Measurements of three terms in Eq. 1, through a sawtooth crash, in the MST edge region. 

 

 
FIG.5. Magnetic field amplitudes of the dominant edge-resonant m=0, n=1 mode, core-resonant 

m=1, n=6 mode, and core plasma rotation for cases with (black traces) and without (red traces) a 

large increase in the m=0 mode amplitude. 
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Hall term in the mean-field parallel Ohm’s law,   
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The first term on the r.h.s. of Eq. 2 is the MHD dynamo, while the second term is referred to 

as the Hall dynamo in the context of current profile relaxation (i.e, parallel current transport). 

The Hall dynamo is a two-fluid effect which has been measured large near major mode-

resonant surfaces in MST.[5] Thus, a large Hall dynamo (that relaxes the current density 

profile) would also produce a strong effect on plasma momentum.  If the plasma has a 

preferred flow profile (e.g., mandated by flow effects on tearing instability), then a strong, 

opposing Lorentz force would need to arise.  Although the coupled momentum and current 

transport problem has not been solved from two-fluid theory, we have examined in detail the 

momentum transport from tearing modes in single-fluid MHD, described in the next section.  

 

4.  Theoretical and computational evaluation of stresses 

 

To elucidate the physics of the forces (or torques) from tearing modes, we have performed 

three sets of calculations, of increasing completeness.[7] Each treats an RFP plasma with 

sub-Alfvenic flow. First, we have analytically examined forces arising from a single tearing 

mode in the linear regime. The force from both the Maxwell and Reynolds stresses, evaluated 

from quasilinear theory, are localized to the narrow reconnection layer.   

 

Second, we have computed the forces for the full nonlinear evolution of a single tearing 

mode, In the linear regime, the computation is consistent with the quasilinear theory.  The 

forces in the nonlinearly saturated state are shown in FIG.6, where the relative contributions 

of the two forces depends on the values chosen for the resistivity and viscosity.  Both forces 

change sign about the mode-resonant surface, thereby transporting momentum outward in 

radius (while conserving the total momentum in the plasma).  The transport rate is 1000 times 

faster than that due to classical viscosity.  

 

Third, we have computed the complete case of multiple, nonlinearly coupled tearing modes.  

The computation, using the DEBS code, solves the full MHD equations.  Multiple modes 

arise and follow an approximate sawtooth cycle, somewhat similar (though less sharp) to that 

which occurs in experiment.  The presence of multiple modes leads to a global change in the 

flow profile, as shown in FIG.7.  In addition, comparison to the single nonlinear mode 

reveals that nonlinear coupling strengthens the turbulent stresses. The effect of multiple, 

nonlinearly coupled tearing modes is not merely the superposition of independent, radially 

separated effects. Rather, the force arising from the stress of one mode (among many) is itself 

increased by the presence of other modes.  For example, the phase between the current 

density and magnetic field of a specific mode is altered (from the case of one mode only) so 

as to increase the Maxwell stress.  This effect is consistent with experiment. During a 

sawtooth crash, the phase between 
 
%j and  

%B (measured by Faraday rotation) for a core-

resonant tearing mode changes to increase the Maxwell stress term.[5]  Finally, to further test 

the effect of nonlinear coupling, we have performed a computation in which the m = 0 mode 

is computationally suppressed, much like the experimental case shown in FIG.5. This 

suppresses the dominant nonlinear coupling effects. In this case the plasma evolves to a 

quasisteady state without sawtooth oscillations, the forces and momentum transport are 

reduced greatly, and the flow profile does not flatten, and momentum transport is greatly 

reduced.  
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5.  Conclusions 

 

Experimental measurements of momentum transport and fluctuation-induced forces, 

combined with theoretical and computational MHD evaluation of the forces, establish that 

tearing instabilities drive strong momentum transport.  Moreover, the transport is enhanced 

by the nonlinear coupling of multiple tearing modes.  However, two experimental results are 

yet not fully understood. First, the two fluctuation-induced forces (from Maxwell and 

Reynolds stresses) are each much larger than needed to explain momentum transport. The 

total force (the sum of the two large, but opposing forces) is of the right magnitude (although 

within error bars) to account for the transport.  The reason for the large size of the individual 

forces, not yet known, is conjectured to arise from the coupling of the momentum transport 

 
FIG.7.  Radial profile of axial plasma flow before (dotted line) and after (solid line) as 

sawtooth crash, as predicted from MHD computation with multiple tearing modes. 

 
FIG.6. MHD computation of instability-induced forces from a single tearing mode, vs radius, in 

its saturated state. The vertical dashed line denotes the radial location of the mode-resonant 
surface 



  EX/P5-3 

7 

problem to the two-fluid dynamo problem, within which the Lorentz force appears as a Hall 

dynamo effect. Second the theoretical MHD results do not quantitatively match experimental 

results, producing smaller forces and weaker flattening of the flow profiles.  These issues 

might be resolved through two-fluid investigation of momentum transport for parameters 

(such as resistivity and viscosity) closer to that of the experiment. 

 

These results in a fusion plasma have connections to momentum transport in astrophysical 

plasmas.  For example, momentum transport occurs at rapid rates in accretion disks that 

surround compact objects such a black holes.  A transport rate higher than the collisional 

value must occur in order to account for the observed accretion rate.  We are investigating 

momentum transport by current-driven tearing instability as a complementary explanation to 

the standard model of transport from flow-driven instability (known as the magnetorotatonal 

instability).  
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